Cesàro Summability of Laguerre Series

D. P. Gupta

Department of Mathematics, M. N. Regional Engineering College, Allahabad-4, India
Communicated by Yudell L. Luke
Received October 27, 1970

1. Let $f(x)$ be a function defined and Lebesgue measurable in the interval $[0, \infty]$ such that

$$
\begin{equation*}
\int_{0}^{\infty} e^{-u} u^{\alpha} f(u) d u<\infty, \quad \alpha>-1, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} e^{-u} u^{\alpha} f(u) L_{n}^{(\alpha)}(u) d u<\infty, \quad \alpha>-1, \tag{1.2}
\end{equation*}
$$

where $L_{n}^{(\alpha)}(x)$ denote the Laguerre functions of order $\alpha>-1$, defined by the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{n}^{(\alpha)}(x) \omega^{n}=(1-\omega)^{-\alpha-1} \exp \left(-\frac{x \omega}{1-\omega}\right) . \tag{1.3}
\end{equation*}
$$

The Fourier-Laguerre expansion associated with the function $f(x)$ is given by

$$
\begin{equation*}
f(x) \sim \sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(x) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(\alpha+1)\binom{n+\alpha}{n} a_{n}=\int_{0}^{\infty} e^{-x} x^{\alpha} f(x) L_{n}^{(\alpha)}(x) d x . \tag{1.5}
\end{equation*}
$$

In this paper we shall deal with the problem of Cesàro summability of the Fourier-Laguerre series (1.4) at the end point $x=0$ of the linear interval $[0, \infty$]. Kogbetliantz [2, 3, 4] and Szegö [5, 6] have given a number of farreaching results on the Cesàro-summability of series (1.4). A summability theorem for $x=0$ given by Szegö reads as follows.

Theorem A. Let $f(x)$ be continuous at $x=0$. If we assume the existence of the integral

$$
\begin{equation*}
\int_{1}^{\infty} e^{-x / 2} x^{\alpha-k-1 / 3}|f(x)| d x \tag{1.6}
\end{equation*}
$$

the Laguerre series (1.4) is (C, k)-summable at $x=0$, with the sum $f(0)$, provided $k>\alpha+\frac{1}{2}$.

We shall prove certain generalizations of Theorem A. Our line of work corresponds to the classical work of Verblunsky [7] and Bosanquet [1] on Fourier trigonometric series.

The results on trigonometric series are so well known that I don't propose to restate them over here. However, the analogy will become clear as soon as we state our own results on Laguerre series.

We write

$$
\begin{align*}
\phi(u) & =[f(u)-f(0)] \frac{e^{-u} u^{\alpha}}{\Gamma(\alpha+1)} \\
\Phi_{p}(x) & =\frac{1}{\Gamma(p)} \int_{0}^{x}(x-t)^{p-1} \phi(t) d t ; \quad p>0 \tag{1.7}\\
\Phi_{0}(x) & =\phi(x) \\
\phi_{p}(x) & =\Gamma(p+1) x^{-p} \Phi_{p}(x), \quad p \geqslant 0
\end{align*}
$$

and, clearly

$$
\Phi_{p}(x)=\frac{d}{d x} \Phi_{p+1}(x), \quad-1<p<0
$$

The following theorems will be proved.
Theorem 1. If

$$
\begin{equation*}
F(t) \equiv \int_{0}^{t}|\phi(u)| d u=o\left(t^{1+\alpha}\right) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{\infty} e^{t / 2} t^{-k-1 / 3}|\phi(t)| d t<\infty \tag{1.9}
\end{equation*}
$$

then the series (1.4) is (C, k)-summable at the point $x=0$ with the sum $f(0)$, provided that $k>\alpha+\frac{1}{2}$ and $\alpha>-1$.

Thborem 2. If

$$
\begin{equation*}
\int_{0}^{t}\left|\phi_{p}(u)\right| d u=o\left(t^{1+\alpha}\right), \quad p \geqslant 0 \tag{1.10}
\end{equation*}
$$

and the condition (1.9) holds true, then the series (1.4) is (C, k)-summable at the point $x=0$, with the sum $f(0)$, provided that $\alpha>-1$ and $k>\alpha+p+\frac{1}{2}$.

Theorem 3. If

$$
\begin{gather*}
\int_{0}^{t}\left|\phi_{p}(u)\right| d u=O\left(t^{1+\alpha}\right), \quad p \geqslant 0 \tag{1.11}\\
\phi_{p+1}(t)=o\left(t^{\alpha}\right) \tag{1.12}
\end{gather*}
$$

and condition (1.9) holds true, then the series (1.4) is (C, k)-summable at the point $x=0$, with the sum $f(0)$, provided that $\alpha>-1$ and $k>\alpha+p+\frac{1}{2}$.
2. In order to prove the above theorems we shall make use of the following well known order estimates of Laguerre functions:

If α is arbitrary and real, C and ω are fixed positive constants, then as $n \rightarrow \infty$,

$$
L_{n}^{(\alpha)}(x)= \begin{cases}x^{-\alpha / 2-1 / 4} O\left(n^{\alpha / 2-1 / 4}\right), \quad \text { if } c / n \leqslant x \leqslant \omega \tag{2.1}\\ O\left(n^{\alpha}\right), & \text { if } \quad 0 \leqslant x \leqslant c / n\end{cases}
$$

For $\alpha \geqslant-\frac{1}{2}, 0<x \leqslant \omega$,

$$
L_{n}^{(\alpha)}(x)=\left\{\begin{array}{l}
x^{-\alpha / 2-1 / 4} O\left(n^{\alpha / 2-1 / 4}\right) \tag{2.2}\\
O\left(n^{\alpha}\right)
\end{array}\right.
$$

both bounds being valid.
For $\alpha \leqslant-\frac{1}{2}, 0 \leqslant x \leqslant \omega$,

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=O\left(n^{\alpha / 2-1 / 4}\right) \tag{2.3}
\end{equation*}
$$

If α and λ are arbitrary and real, $a>0,0<\eta<4$, then for $n \rightarrow \infty$,

$$
\begin{equation*}
\max e^{-x / 2} x^{\lambda}\left|L_{n}^{(\alpha)}(x)\right| \sim n^{0} \tag{2.4}
\end{equation*}
$$

where

$$
Q= \begin{cases}\max (\lambda-1 / 2, \alpha / 2-1 / 4), & a \leqslant x \leqslant(4-\eta) n ; \tag{2.5}\\ \max (\lambda-1 / 3, \alpha / 2-1 / 4), & x \geqslant a\end{cases}
$$

the maxima being taken in the intervals pointed out in the right hand members of (2.5).

A systematic derivation of all the above estimates has been made by Szegö [6, pp. 174-176].
3. Cesàro means. The n-th Cesàro sum of order k of the series

$$
\begin{equation*}
\sum_{n} L_{n}^{(\alpha)}(t) \tag{3.1}
\end{equation*}
$$

is by definition (1.3), the coefficient of r^{n} in the expression

$$
\begin{equation*}
(1-r)^{-k-1} \sum_{n=0}^{\infty} L_{n}^{(\alpha)}(t) r^{n}=(1-r)^{-k-1}(1-r)^{-\alpha-1} \exp \left(-\frac{x \omega}{1-\omega}\right) \tag{3.2}
\end{equation*}
$$

and is therefore equal to $L_{n}^{(\alpha+k+1)}(t)$.
The Laguerre series at $x=0$ may be written as

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(0)=\{\Gamma(\alpha+1)\}^{-1} \sum_{n=0}^{\infty} \int_{0}^{\infty} e^{-t} t^{\alpha} f(t) L_{n}^{(\alpha)}(t) d t \tag{3.3}
\end{equation*}
$$

On account of (3.2), the Cesàro means of order k are given by (see Szegö [6, p. 270]

$$
\begin{equation*}
\sigma_{n}^{(k)}(0)=\left\{A_{n}^{(k)} \Gamma(\alpha+1)\right\}^{-1} \int_{0}^{\infty} e^{-t} t^{\alpha} f(t) L_{n}^{(\alpha+k+1)}(t) d t \tag{3.4}
\end{equation*}
$$

Writing $f(t)=f(0)$ in the n-th partial sum of the series (3.3) and employing the orthogonality property of Laguerre functions, we have

$$
\begin{align*}
\sigma_{n}^{(k)}(0)-f(0) & =\left\{A_{n}^{(k)} \Gamma(\alpha+1)\right\}^{-1} \int_{0}^{\infty} e^{-t} t^{\alpha}\{f(t)-f(0)\} L_{n}^{(\alpha+k+1)}(t) d t \\
& =\left\{A_{n}^{(k)}\right\}^{-1} \int_{0}^{\infty} \phi(t) L_{n}^{(\alpha+k+1)}(t) d t \tag{3.5}
\end{align*}
$$

4. Proof of Theorem 1. In order to prove the theorem we have to show that

$$
\begin{align*}
I & \equiv\left\{A_{n}^{(k)}\right\}^{-1} \int_{0}^{\infty} \phi(t) L_{n}^{(\alpha+k+1)}(t) d t \tag{4.1}\\
& =o(1), \quad \text { as } n \rightarrow \infty .
\end{align*}
$$

We break the integral into three parts and write

$$
\begin{equation*}
I=\int_{0}^{1 / n}+\int_{1 / n}^{\eta}+\int_{\eta}^{\omega}+\int_{\omega}^{\infty} \tag{4.2}
\end{equation*}
$$

(where ω is large but fixed, and η is suitably chosen small constant)

$$
=I_{1}+I_{2}+I_{3}+I_{4}, \text { e.g. }
$$

We first dispose of I_{4} in the manner it is done by Szegö [6, p. 270]. In fact the integrability condition (1.9) has been assumed in such a way that I_{4} may tend to 0 as $n \rightarrow \infty$. We apply the order estimate (2.4) with α replaced by
$\alpha+k+1$, and $\lambda=k+\frac{1}{3}$, and we see that $\lambda-\frac{1}{3}=k>((\alpha+k+1) / 2)-\frac{1}{4}$, whence

$$
\begin{align*}
\left|I_{4}\right| & =O\left(n^{-k}\right) \int_{\omega}^{\infty}|\phi(u)| e^{u / 2} u^{-k-1 / 3} n^{k} d u \\
& =O(1) \int_{\omega}^{\infty}|\phi(u)| e^{u / 2} u^{-k-1 / 3} d u \tag{4.3}\\
& =o(1)
\end{align*}
$$

since ω can be chosen as large as we please.
Coming to I_{1}, we have, using the order estimate (2.1)

$$
\begin{align*}
\left|I_{1}\right| & =O\left(n^{-k}\right) \int_{0}^{1 / n}|\phi(u)|\left|L_{n}^{(\alpha+k+1)}(u)\right| d u \\
& =O\left(n^{-k}\right) \int_{0}^{1 / n}|\phi(u)| O\left(n^{\alpha+k+1}\right) d u \tag{4.4}\\
& =O\left(n^{\alpha+1}\right) \int_{0}^{1 / n}|\phi(u)| d u \\
& =O\left(n^{\alpha+1}\right) o(1 / n)^{1+\alpha}, \text { using }(1.8) \\
& =o(1), \quad \text { as } n \rightarrow \infty
\end{align*}
$$

In I_{2}, we make use of the first order estimate in (2.1). We therefore have

$$
\begin{align*}
\left|I_{2}\right|= & O\left(n^{-k}\right)\left|\int_{1 / n}^{n} \phi(t) L_{n}^{(\alpha+k+1)}(t) d t\right| \\
= & O\left(n^{-k}\right) \int_{1 / n}^{n}|\phi(t)| t^{-(\alpha+k+1) / 2-1 / 4} n^{(\alpha+k+1) / 2-1 / 4} d t \\
= & O\left(n^{\alpha / 2-k / 2+1 / 4}\right) \int_{1 / n}^{n}|\phi(t)| t^{-\alpha / 2-k / 2-3 / 4} d t \\
= & O\left(n^{\alpha / 2-k / 2+1 / 4}\right)\left\{\left[F(t) t^{-\alpha / 2-k / 2-3 / 4}\right]_{1 / n}^{n}\right. \\
& \left.+c \int_{1 / n}^{\eta} F(t) t^{-\alpha / 2-k / 2-7 / 4} d t\right\} \tag{4.5}\\
= & O\left(n^{\alpha / 2-k / 2+1 / 4}\right)\left[F(\eta) \eta^{-\alpha / 2-k / 2-3 / 4}\right. \\
& \left.+F\left(\frac{1}{n}\right) n^{\alpha / 2+k / 2+3 / 4}+\int_{1 / n}^{n} o\left(t^{1+\alpha}\right) t^{-\alpha / 2-k / 2-7 / 4} d t\right] \\
= & O\left(n^{\alpha / 2-k / 2+1 / 4}\right)+O\left(n^{\alpha / 2+k / 2+3 / 4}\right) o(1 / n)^{1+\alpha} n^{\alpha / 2-k / 2+1 / 4} \\
& +O\left(n^{\alpha / 2-k / 2+1 / 4}\right) o\left(n^{-\alpha / 2+k / 2-1 / 4}\right) \\
= & o(1)+o(1)+o(1), \text { since } k>\alpha+\frac{1}{2} \\
= & o(1)
\end{align*}
$$

Finally,

$$
\begin{align*}
\left|I_{3}\right| & =O\left(n^{-k}\right) \int_{n}^{\omega}|\phi(t)|\left|L_{n}^{(\alpha+k+1)}(t)\right| d t \\
& =O\left(n^{-k}\right) \int_{n}^{\omega}|\phi(t)| n^{(\alpha+k+1) / 2-1 / 4} t^{-(\alpha+k+1) / 2-1 / 4} d t \tag{4.6}\\
& =O\left(n^{-k / 2+\alpha / 2+1 / 4}\right) \int_{\eta}^{\omega}|\phi(t)| d t \\
& =o(1)
\end{align*}
$$

since $\phi(t)$ is Lebesgue integrable and $k>\alpha+\frac{1}{2}$.
Combining (4.2),... (4.6), we obtain the desired result.
5. Proof of Theorem 2. We have to show that

$$
\begin{equation*}
I \equiv \frac{1}{A_{n}^{(k)}} \int_{0}^{\infty} \phi(u) L_{n}^{(\alpha+k+1)}(u) d u=o(1) \tag{5.1}
\end{equation*}
$$

Write

$$
\begin{align*}
I & =\int_{0}^{n}+\int_{n}^{\omega}+\int_{\omega}^{\infty} \tag{5.2}\\
& =I_{1}+I_{2}+I_{3}, \text { e.g. }
\end{align*}
$$

where, as in Section 4, ω is taken sufficiently large and fixed and η is taken sufficiently small but fixed.
I_{3} is disposed off exactly as in the proof of Theorem 1 . We now take I_{1}. Integrating by parts m times, we obtain

$$
\begin{align*}
I_{1}= & \left(A_{n}^{(k)}\right)^{-1}\left\{\left[\sum_{\rho=1}^{m}(-1)^{\rho-1} \Phi_{\rho}(u)\left(\frac{d}{d u}\right)^{\rho-1} L_{n}^{(\alpha+k+1)}(u)\right]_{0}^{\eta}\right. \\
& \left.+(-1)^{m} \int_{0}^{n} \Phi_{m}(u)\left(\frac{d}{d u}\right)^{m} L_{n}^{(\alpha+k+1)}(u) d u\right\} \\
= & A+(-1)^{m} B, \text { e.g. } \tag{5.3}
\end{align*}
$$

It is known that (see Szegö [6, p. 101])

$$
\begin{equation*}
\frac{d}{d x} L_{n}^{(\alpha)}(x)=-L_{n-1}^{(\alpha+1)}(x) \tag{5.4}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
A & =\left(A_{n}^{(k)}\right)^{-1}\left[\sum_{\rho=1}^{m}(-1)^{\rho-1} \Phi_{\rho}(u) L_{n-\rho+1}^{(\alpha+k+\rho)}(u)\right]_{0}^{\eta} \tag{5.5}\\
& =\left(A_{n}^{(k)}\right)^{-1} \sum_{\rho=1}^{m}(-1)^{\rho-1} \Phi_{\rho}(\eta) L_{n-\rho+1}^{(\alpha+k+\rho)}(\eta)
\end{align*}
$$

But

$$
\begin{align*}
\left(A_{n}^{(k)}\right)^{-1} L_{n-\rho+1}^{(\alpha+k+\rho)}(\eta) & =O\left(n^{-k}\right) O\left(n^{(\alpha+k+\rho) / 2-1 / 4}\right), \quad \text { from (2.1) if } \quad \eta>1 / n \\
& =O\left(n^{\alpha / 2-k / 2+\rho / 2-1 / 4}\right) \\
& =O\left(n^{\alpha / 2-1 / 2(\alpha+p+1 / 2+\epsilon)+\rho / 2-1 / 4}\right), \quad \text { where } \quad \epsilon>0 \\
& =O\left(n^{(-p+\rho-1-\epsilon) / 2}\right) \\
& =o(1), \quad \text { if } \quad \rho<p+1 \tag{5.6}
\end{align*}
$$

From (5.5) and (5.6) it is seen that

$$
\begin{equation*}
A=o(1), \quad \text { if } \quad p+1>m \tag{5.7}
\end{equation*}
$$

Let us denote $(d / d t)^{m} L_{n}^{(\alpha+k+1)}(t)$ by $S_{n}^{(m)}(t)$.
If p is not integral, let $p=m+\delta, 0<\delta<1$. Consider the integral

$$
\begin{aligned}
v & =\left(A_{n}^{(k)}\right)^{-1} \int_{0}^{\eta} \Phi_{p}(\gamma) S_{n}^{(p)}(\gamma) d \gamma \\
& =\frac{\left(A_{n}^{(k)}\right)^{-1}}{\Gamma(1-\delta)} \int_{0}^{\eta} \Phi_{p}(\gamma) d \gamma \int_{\gamma}^{\eta}(t-\gamma)^{-\delta} S_{n}^{(m+1)}(t) d t \\
& =\frac{1}{\Gamma(1-\delta)} \int_{0}^{\eta} S_{n}^{(m+1)}(t) d t \int_{0}^{t}(t-\gamma)^{-\delta} \Phi_{p}(\gamma) d \gamma
\end{aligned}
$$

but

$$
\begin{aligned}
\Phi_{p}(\gamma) & =\Phi_{m+\delta}(\gamma) \\
& =\frac{1}{\Gamma(\delta)} \int_{0}^{\gamma}(\gamma-t)^{\delta-1} \Phi_{m}(t) d t
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\int_{0}^{t}(t-\gamma)^{-\delta} \Phi_{p}(\gamma) d \gamma & =\frac{1}{\Gamma(\delta)} \int_{0}^{t}(t-\gamma)^{-\delta} d \gamma \int_{0}^{\gamma}(\gamma-u)^{\delta-1} \Phi_{m}(u) d u \\
& =\frac{1}{\Gamma(\delta)} \int_{0}^{t} \Phi_{m}(u) d u \int_{u}^{t}(t-\gamma)^{-\delta}(\gamma-u)^{\delta-1} d \gamma
\end{aligned}
$$

The integral on the right transforms by the substitution $\gamma=u+(t-u)^{\nu}$, into

$$
\int_{0}^{1}(1-\nu)^{-\delta} \nu^{\delta-1} d \nu=\frac{\Gamma(1-\delta) \Gamma(\delta)}{\Gamma(1)}
$$

Thus

$$
\begin{aligned}
\int_{0}^{t}(t-\gamma)^{-\delta} \Phi_{p}(\gamma) d \gamma & =\Gamma(1-\delta) \int_{0}^{t} \Phi_{m}(u) d u \\
& =\Gamma(1-\delta) \Phi_{m+1}(t)
\end{aligned}
$$

Consequently, from (5.8)

$$
\begin{aligned}
v & =\int_{0}^{\eta} \Phi_{m+1}(u) S_{n}^{(m+1)}(u) d u\left(A_{n}^{(k)}\right)^{-1} \\
& =\left[\Phi_{m+1}(\eta) S_{n}^{(m)}(\eta)-\int_{0}^{\eta} \Phi_{p}(u) S_{n}^{(p)}(u) d u\right]\left(A_{n}^{(k)}\right)^{-1}
\end{aligned}
$$

and therefore we may write in (5.3)

$$
\begin{align*}
B & =\int_{0}^{\eta} \Phi_{m}(u) S_{n}^{(m)}(u) d u \\
& =\left(A_{n}^{(k)}\right)^{-1}\left[\Phi_{m+1}(\eta) S_{n}^{(m)}(\eta)-\int_{0}^{\eta} \Phi_{p}(u) S_{n}^{(p)}(u) d u\right] \tag{5.9}\\
& =o(1)-\left(A_{n}^{(k)}\right)^{-1} \int_{0}^{\eta} \Phi_{p}(u) S_{n}^{(p)}(u) d u
\end{align*}
$$

by the argument advanced in (5.6), since $m<p$.
From (5.3), (5.6), and (5.9) it is evident that it now remains to show that the integral

$$
\begin{equation*}
J \equiv\left(A_{n}^{(k)}\right)^{-1} \int_{0}^{\eta} u^{p} \phi_{p}(u) S_{n}^{(p)}(u) d u=o(1) \tag{5.10}
\end{equation*}
$$

Write

$$
\begin{align*}
J & =\int_{0}^{c / n}+\int_{c / n}^{\eta} \tag{5.11}\\
& =J_{1}+J_{2}, \mathrm{e} . \mathrm{g}
\end{align*}
$$

Now

$$
\begin{aligned}
\left|J_{1}\right| & =O\left(n^{-k}\right) \int_{0}^{c / n} u^{p}\left|\phi_{p}(u)\right|\left|L_{n-p}^{(\alpha+k+1+p)}(u)\right| d u \\
& =O\left(n^{-k}\right) \int_{0}^{c / n} u^{p}\left|\phi_{p}(u)\right| O\left(n^{\alpha+k+1+p}\right) d u \\
& =O\left(n^{\alpha+1+p}\right) \frac{1}{n^{p}} \int_{0}^{c / n}\left|\phi_{p}(u)\right| d u \\
& =O\left(n^{\alpha+1}\right) o(1 / n)^{\alpha+1}, \quad \text { from }(1.10) \\
& =o(1)
\end{aligned}
$$

Again

$$
\begin{aligned}
\left|J_{2}\right| \leqslant & \left(A_{n}^{(k)}\right)^{-1} \int_{c / n}^{n} u^{p}\left|\phi_{p}(u)\right|\left|L_{n-p}^{(\alpha+k+1+p)}(u)\right| d u \\
= & O\left(n^{-k}\right) \int_{c / n}^{\eta} u^{p}\left|\phi_{p}(u)\right| u^{-\alpha / 2-k / 2-1 / 2-p / 2-1 / 4} \\
& \times n^{\alpha / 2+k / 2+1 / 2+p / 2-1 / 4}, \quad \text { from }(2.1), \\
= & O\left(n^{(\alpha-k+p) / 2+1 / 4}\right) \int_{c / n}^{n}\left|\phi_{p}(u)\right| u^{(p-\alpha-k) / 2-3 / 4} d u \\
= & O\left(n^{-\epsilon / 2}\right) \int_{c / n}^{\eta}\left|\phi_{p}(u)\right| u^{-\alpha-\epsilon / 2-1} d u
\end{aligned}
$$

having written $k=\alpha+p+\frac{1}{2}+\epsilon$.
Integrating by parts and writing

$$
\psi(t)=\int_{0}^{t}\left|\phi_{p}(u)\right| d u
$$

we obtain

$$
\begin{aligned}
\left|J_{2}\right|= & O\left(n^{-\epsilon / 2}\right)\left[u^{-\alpha-\epsilon / 2-1} \psi(u)\right]_{c / n}^{\eta} \\
& +O\left(n^{-\epsilon / 2}\right) \int_{c / n}^{\eta} u^{-\alpha-\epsilon / 2-2} \psi(u) d u \\
= & O\left(n^{-\epsilon / 2}\right)+O\left(n^{-\epsilon / 2}\right) O\left(n^{\alpha+\epsilon / 2+1}\right) o \cdot\left(\frac{1}{n^{1+\alpha}}\right) \\
& +O\left(n^{-\epsilon / 2}\right) \int_{c / n}^{\eta} o\left(u^{-\alpha-\epsilon / 2-2+1+\alpha}\right) d u
\end{aligned}
$$

from (1.10), and because η is chosen sufficiently small,

$$
\begin{align*}
& =o(1)+o(1)+o\left(n^{-\epsilon / 2}\right) \int_{o / n}^{\eta} u^{-1-\epsilon / 2} d u \\
& =o(1)+o\left(n^{-\epsilon / 2}\right)\left[u^{-\epsilon / 2}\right]_{c / n}^{\eta} \\
& =o(1)+o(1) \\
& =o(1) \tag{5.13}
\end{align*}
$$

Finally we come to the integral

$$
I_{2}=\frac{1}{\left(A_{n}^{(k)}\right)} \int_{\eta}^{\omega} \phi(u) L_{n}^{(\alpha+k+1)}(u) d u
$$

Using the estimate (2.1), we have

$$
\begin{align*}
\left|I_{2}\right| & =O\left(n^{-k}\right) \int_{\eta}^{\omega}|\phi(u)|\left|L_{n}^{(\alpha+k+1)}(u)\right| d u \\
& =O\left(n^{-k}\right) \int_{n}^{\omega}|\phi(u)| n^{(\alpha+k+1) / 2-1 / 4} u^{-(\alpha+k+1) / 2-1 / 4} d u \tag{5.14}\\
& =O\left(n^{\alpha / 2-k / 2+1 / 4}\right) \int_{\eta}^{\omega}|\phi(u)| d u \\
& =O\left(n^{\alpha / 2-k / 2+1 / 4}\right), \text { by the property of the Lebesgue integral, } \\
& =o(1), \quad \text { since } \quad k>\alpha+p+\frac{1}{2}
\end{align*}
$$

Combining (5.2), (5.7), (5.9), (5.11), (5.12), (5.13) and (5.14), we have the desired result.
6. Proof of Theorem 3. The proof of Theorem 2 holds upto the stage of (5.9). Actually, what we have to demonstrate now is that under conditions (1.11) and (1.12),

$$
\begin{equation*}
J \equiv\left(A_{n}^{(k)}\right)^{-1} \int_{0}^{\eta} u^{p} \phi_{p}(u) S_{n}^{(p)}(u) d u=o(1) \tag{6.1}
\end{equation*}
$$

Let m be a fixed number sufficiently large such that $m / n<\eta$. Now we write

$$
\begin{align*}
J & =\int_{0}^{m / n}+\int_{m / n}^{n} \tag{6.2}\\
& =J_{1}+J_{2}, \text { e.g. }
\end{align*}
$$

Consider first J_{1}.

$$
\begin{align*}
J_{1} & =\left\{A_{n}^{(k)}\right\}^{-1} \int_{0}^{m / n} \Phi_{p}(u) S_{n}^{(p)}(u) d u \\
& =\left\{A_{n}^{(k)}\right\}^{-1}\left[\Phi_{p+1}(m / n) S_{n}^{(p)}(m / n)-\int_{0}^{m / n} t^{p+1} \phi_{p+1}(t) S_{n}^{(p+1)}(t) d t\right] \tag{6.3}\\
& =J_{1,1}+J_{1,2}, \text { e.g. }
\end{align*}
$$

Now

$$
\begin{align*}
\left|J_{1,1}\right|= & O\left(n^{-k}\right)\left[(m / n)^{p+1}\left|\phi_{p+1}(m / n)\right|\left|L_{n-p}^{(\alpha+k+1+p)}(m / n)\right|\right] \\
= & O\left(n^{-k}\right)\left[O\left(n^{-p-1}\right) o(m / n)^{\alpha} O(m / n)^{-(\alpha+k+1+p) / 2-1 / 4}\right. \\
& \left.\times n^{(\alpha+k+1+p) / 2-1 / 4}\right], \quad \text { from (2.1), } \\
= & o(1) \tag{6.4}
\end{align*}
$$

Coming to $J_{1,2}$, we have

$$
\begin{align*}
\left|J_{1,2}\right| & =\left|\left\{A_{n}^{(k)}\right\}^{-1} \int_{0}^{m / n} t^{p+1} \phi_{p+1}(t) S_{n}^{(p+1)}(t) d t\right| \\
& =O\left(n^{-k}\right) \int_{0}^{m / n} t^{p+1} o\left(t^{\alpha}\right)\left|L_{n-p-1}^{(\alpha+k+2)}(t)\right| d t \\
& =O\left(n^{-k}\right) O\left(n^{\alpha+k+p+2}\right) \int_{0}^{m / n} o\left(t^{p+\alpha+1}\right) d t \tag{6.5}\\
& =O\left(n^{\alpha+p+2}\right) o(m / n)^{\alpha+p+2} \\
& =o(1)
\end{align*}
$$

Again,

$$
\begin{aligned}
\left|J_{2}\right| & =O\left(n^{-k}\right) \int_{m / n}^{\eta} u^{p}\left|\phi_{p}(u) S_{n}^{(p)}(u)\right| d u \\
& =O\left(n^{-k}\right) \int_{m / n}^{n} u^{p}\left|\phi_{p}(u)\right|\left|L_{n-p}^{(\alpha+p+k+1)}(u)\right| d u \\
& =O\left(n^{-k}\right) \int_{m / n}^{\eta} u^{p}\left|\phi_{p}(u)\right| O\left(n^{(\alpha+p+k+1) / 2-1 / 4} u^{-(\alpha+p+k+1) / 2-1 / 4} d u\right. \\
& =O\left(n^{(\alpha+p-k) / 2+1 / 4}\right) \int_{m / n}^{\eta} u^{-(\alpha-p+k+1) / 2-3 / 4}\left|\phi_{p}(u)\right| d u \\
& =O\left(n^{-\epsilon / 2}\right) \int_{m / n}^{n} u^{-\alpha-1-\epsilon / 2}\left|\phi_{p}(u)\right| d u
\end{aligned}
$$

setting $k=\alpha+p+\frac{1}{2}+\epsilon$.

Integrating by parts and writing

$$
\begin{align*}
& \psi(t)=\int_{0}^{t}\left|\phi_{p}(u)\right| d u \\
\left|J_{2}\right|= & O\left(n^{-\epsilon / 2}\right)\left[u^{-\alpha-1-\epsilon / 2} \psi(u)\right]_{m / n}^{\eta} \\
& +O\left(n^{-\epsilon / 2}\right) \int_{m / n}^{n} u^{-\alpha-\epsilon / 2-2} \psi(u) d u \\
= & J_{2,1}+J_{2,2}, \text { e.g. } \tag{6.6}\\
\left|J_{2,1}\right|= & O\left(n^{-\epsilon / 2}\right)+O\left(n^{-\epsilon / 2}\right)(m / n)^{-\alpha-\epsilon / 2-1} O(m / n)^{\alpha+1} \\
= & o(1)+O\left(m^{-\epsilon / 2}\right) \tag{6.7}\\
= & o(1)
\end{align*}
$$

if m is chosen sufficiently large.
Also

$$
\begin{align*}
\left|J_{2,2}\right| & =O\left(n^{-\epsilon / 2}\right) \int_{m / n}^{n} O\left(t^{1+\alpha}\right) \frac{d t}{t^{\alpha+\epsilon / 2+2}} \\
& =O\left(n^{-\epsilon / 2}\right) \int_{m / n}^{n} t^{-\epsilon / 2-1} d t \\
& =O\left(n^{-\epsilon / 2}\right)\left[t^{-\epsilon / 2}\right]_{m / n}^{n} \tag{6.8}\\
& =o(1)+O\left(m^{-\epsilon / 2}\right) \\
& =o(1)
\end{align*}
$$

as before by choosing n sufficiently large. Combining (6.1)-(6.8), we have the final result.

References

1. L. S. Bosanquet, On the summability of the Fourier series, Proc. London Math. Soc. 31 (1930), 144-164.
2. E. Kogbetliantz, Sur les séries d'Hermite et de Laguerre, C. R. Acad Sci. Paris Ser. A-B 193 (1931), 386-389.
3. E. Kogbetliantz, Sur les moyennes arithmétiques de séries-noyaux des développement en séries d'Hermite et de Laguerre et sur celles de ces séries-noyaux dérivées terme à terme, J. Math. and Phys. 14 (1935), 37-99.
4. E. Kogbetllantz, Contribution à l'étude du saut d'une fonction donnée par son développement en série d'Hermite ou de Laguerre, Trans. Amer. Math. Soc. 38 (1935), 10-47.
5. G. Szegö, Beiträge zur Theorie der Laguerreschen Polynome I Entwicklungssätze, Math. Z. 25 (1926), 87-115.
6. G. Szegö, "Orthogonal Polynomials," Vol. 23, Amer. Math. Soc. Colloquium Publications, (Revised Edition), 1959.
7. S. Verblunsky, Cesàro summability of trigonometric series, Proc. London Math. Soc. 33 (1932), 384-408.
