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1. Let f(x) be a function defined and Lebesgue measurable in the
interval [0, o] such that

[ewfwdu < 0, o>, (1.1
0
and

[ et L@ du < 0, o> 1, (1.2)
0

where L{*(x) denote the Laguerre functions of order o > —1, defined by the
generating function

f L9%) @™ = (1 — w)™exp (— 1’“" ) 1.3)
n=0 -

w

The Fourier-Laguerre expansion associated with the function f(x) is given
by

o)

f(x) ~ Y, a,LP(x), (1.4)
where
(o 4 1) (n —}’; a) a, = J-: e~ x%f(x) LY9(x) dx. (1.5)

In this paper we shall deal with the problem of Cesaro summability of the
Fourier—Laguerre series (1.4) at the end point x = 0 of the linear interval
[0, ©]. Kogbetliantz [2, 3, 4] and Szegé [5, 6] have given a number of far-
reaching results on the Cesaro-summability of series (1.4). A summability
theorem for x = 0 given by Szego reads as follows.
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THEOREM A. Let f(x) be continuous at x = 0. If we assume the existence
of the integral

| ¥ emattxak-18 | f(x)| dx, (1.6)

the Laguerre series (1.4) is (C, k)-summable at x = 0, with the sum f(0),
provided k > o + 4.

We shall prove certain generalizations of Theorem A. Our line of work
corresponds to the classical work of Verblunsky [7] and Bosanquet {1] on
Fourier trigonometric series. ' '

The results on trigonometric series are so well known that I don’t propose
to restate them over here. However, the analogy will become clear as soon as
we state our own results on Laguerre series.

We write
—_ _ eyt .
$) = ) ~ FO ey
®,(x) = P_(lp), fo " — gy ds;  p>0; 1.7
Dy(x) = $(x);

$o(x) = I'(p + 1) x77@y(x), p = 0;
and, clearly

d
D, (x) = - D,..(x), —1 <p <.
The following theorems will be proved.

THEOREM 1. If

Foy= [ "1 )] du = o), (1.8)

and

J'w eti2—-113 | &(t)| dt < oo, (1.9

1

then the series (1.4) is (C, k)-summable at the point x = 0 with the sum f(0),
provided that k > o + % and « > —1.

THEOREM 2. If

[ 16,00 du = o), p>0, (1.10)
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and the condition (1.9) holds true, then the series (1.4) is (C, k)-summable at the
point x = 0, with the sum f(0), provided that « > —1 andk > o« + p + L.

THEOREM 3. If

[[1$:0) du = 0@+, p>0, .11
$pia(t) = o(2%) (1.12)

and condition (1.9) holds true, then the series (1.4) is (C, k)-summable at the
point x = 0, with the sum f(0), provided that « > —1 and k > o + p -+ %.

2. In order to prove the above theorems we shall make use of the
following well known order estimates of Laguerre functions:
If o is arbitrayy and real, C and « are fixed positive constants, then as
n— o0,

B0 = {oem, i 02x<em @D
Fora > —4,0 < x < w,
Li:x)(x) _ 32—(::)—,1/40(na/2—1/4), 2.2)
both bounds being valid.
Foro < —4,0 < x < w,
LE(x) = O(me/2119), (2.3)

If « and A are arbitrary and real, a > 0,0 < n < 4, then for n — <o,

max e *2x* | L¥(x)| ~n?, (2.4)
where

max(A — 1/2, «/2 — 1/4), a<x< (4 —nmn

Q= max(A — 1/3, cx/2 — 1/4), x> a (25)

the maxima being taken in the intervals pointed out in the right hand members
of (2.5).

A systematic derivation of all the above estimates has been made by
Szegé [6, pp. 174-176].

3. Cesaro means. The n-th Cesaro sum of order k of the series

Y L&), 3.1)
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is by definition (1.3), the coefficient of r* in the expression
A=Y L0 =1 — )" (1 = exp (— 7], (3.2)
2=0 1l —w

and is therefore equal to L& *(r).
The Laguerre series at x = 0 may be written as

S a L0 = T+ D Y [ i L0 (33)
n=0 n=0 "0

On account of (3.2), the Cesaro means of order k are given by (see
Szegb [6, p. 270]

oP(0) = {APT@ + Dy [ ') Le(0) d. (3.4)

Writing f(¢) = f(0) in the n-th partial sum of the series (3.3) and employing
the orthogonality property of Laguerre functions, we have

o(0) — (0) = (APT( + D [~ () — fO)} LE™ (1) dt
) ’ (3.5)
= {(APy [ $(0) L) d.
0

4. Proof of Theorem 1. In order to prove the theorem we have to
show that

1= (4P [ ¢0) LE0) dr

“4.1)
= o(1), as n—» oo.
We break the integral into three parts and write
=" @2)
0 1/n 7 o

(where o is large but fixed, and 7 is suitably chosen small constant)
=L+ L+ 1;+1,,eg.
We first dispose of I, in the manner it is done by Szegd [6, p. 270]. In fact

the integrability condition (1.9) has been assumed in such a way that I, may
tend to 0 as n — c0. We apply the order estimate (2.4) with « replaced by
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at+k+landA=k -+ },andweseethatA — =k > ((« + k+ 1)/2) — },

whence

| L[ = 00 ™) [ | $(u)l enr2us—1son* du

= o) | $u)] a1 dy 4.3)

= o(1),
since w can be chosen as large as we please.
Coming to [, , we have, using the order estimate (2.1)

151 =067 [ 6] | L) da

1/n
=0 [ | $a)| O(r++1) du
° (4.4)

— 06r) [ | $60) du
— O(n*Y) o(1/n)t+e, using (1.8),

= o(1), as n-» 0.

In I, we make use of the first order estimate in (2.1). We therefore have
1Bl = 0| [ $0) L™ de
= O(n*) f:m | h(£)] t-lectiAD 21 /dp(atier /2174 gy
= O(ne/2-¥/2+1/%) L ’:n | $(2)| 122k 2314 Gy

— O(nalz—k/2+1/4) 3[F(t) t—a/z—kl2—3/4]2/

, @>5)

+c f F(t) ekt dt%
1/n

= O(no/2-k/2+1/4) [F('r)) e/2-k/2-3/4

+ F (l) noi2+E/2+3/4 + K o(t1+%) (—o/2—kj2—1/2 dt]
n 1/n

= O(ne/2-k/2H1/a) | O(n=/2+5/2+3/8) o(] /n)b+e po/t-k/2+1/d
+ O(ne/2-*2+1/8) g(p—o/2+k[2-1/4)

= o(1) + o(1) + o(1), since k > o + %,

= o(1).
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Finally,

L] = 0™ [ 40 | Ls*0)] dr

= O(n*) f ¢ | ()] nlethD2-1/4~(atkt1) 2-1/a gy
n

(4.6)
= O(n~%/2te/211/5) .( © | $(2)| dt
= o(1),
since ¢(r) is Lebesgue integrable and k > « + 1.
Combining (4.2),..., (4.6), we obtain the desired result.
5. Proof of Theorem 2. We have to show that
r=_1 [ ® b)) L) du = o(1) G.1)
= 4w ), ° . .
Write
1=+ +] (5.2)

=hL+ 5L+, eg,

where, as in Section 4, w is taken sufficiently large and fixed and » is taken

sufficiently small but fixed.
I, is disposed off exactly as in the proof of Theorem 1. We now take I, .

Integrating by parts m times, we obtain

b= P[5 v e (7) 7 L)
0 [ 0 (42) L8

= A+ (—1)™ B, e.g. (5.3)

It is known that (see Szegd [6, p. 101])

d L@y plasD
7 Ln () = —L57 (). 5.9
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Therefore,
A= [T 7 0,0 LER W)
p=1
5.9
= APV Y (1) D) LEED ().
p=1
But

APy LEED () = O(n™) O(*+212-1%  from (2.1)if 7 > 1/n,

= O(ne/2-F[2+o/2-114)

= O(po/2-1/2etp+1/240+0/2-1/8) - where € > 0,

= O(n'~2+o-1-9/2)

=o(), if p<p+1. (5.6)
From (5.5) and (5.6) it is seen that

A = o(l), if p+1>m 6.7

Let us denote (d/dt)™ L& (2) by S&(¢t).
If p is not integral, let p = m + §, 0 << & << 1. Consider the integral

b= [ 0,0 500) dy

(k-1 » n
— 55 [ e [« - s ar

= Ta - 5) fon S o) d fot (t — 97 Poly) dy,

but
D,(y) = Ppsaly)

J— 1 Y —_ 6—1
=To) fo (y — 1)1 D,(1) dt,
and therefore

[[ &= ) dy = 5 [ = 0y [ 7 — =t D)

~ 5 |, o du [ (¢ — 9yt — -ty
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The integral on the right transforms by the substitution y = u + (¢ — w)y’,
into

I — 81

1
J;] (1 —v)2viadv = )

Thus

fo "t — P By(y) dy = I(1 — 9) fo " @) du
=TI — 8) D, 11(t).

Consequently, from (5.8)
b= [ Ppupalw) ST w) dt (4P
0
= [Punal) STn) — [ @) 5P (@) die] (47,
and therefore we may write in (5.3)
B=| " @, ) S™(w) du
0
= U [Punl) ST) — [ 0,00 SP@ ] (59)
= o) — (4P [" @,) SPw) d,
1]

by the argument advanced in (5.6), since m < p.
From (5.3), (5.6), and (5.9) it is evident that it now remains to show that
the integral

7= 4Py [ w,w) SP(w) du = o(1). (5.10)
Write
c/n n
7= +L, (5.11)

:J1+J2,e.g
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Now
1= 067 [0 gyl | L0
= O(n™) fm u” | $yw) O@**+1%) du
" o (5.12)
= 0(r+10) o5 [ 1 440w d
= O(n*™) o(1/n)*+, from (1.10),
= o(l).
Again

|21 <A1 0| $,6) | LEE W) du
c/n

= O(n*) J' 7; u? | ()| ure/2-k/2-1/2-p/2-1/8
cin
X nelEE/2HL /24 p/2-1/8 from (2.1),

= O(nte-t+p/241/a) f " | ()| utP—a— 2374 gy
c/n

= 00 [ | $, ) umeerr- du,
e/n

having written k = o +p + 3 + e
Integrating by parts and writing

b0 = [ 1 460

we obtain
| Ty | = OB w)]/n

+ O(n—<P) f 1: u—o—<2-2(u) du

— O/ + O(r~<1) O(w+<r*+1) 0. (-

+ O(n—e/Z) fj o(u—a—s/2—2+1+a) du,

from (1.10), and because 7 is chosen sufficiently small,

= o(1) 4 o(1) + o(n—</%) JW; w12 dy

= o(1) + o)y
= o(1) + o(1)
= o(1). (5.13)
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Finally we come to the integral

L= o | 960 L&) du

Using the estimate (2.1), we have

L] =007 [ | $@)l | L) du

= O(n*) f “ | d(a)] mlerirD) 21y ~(aril) 2112 gy
- (5.14)
= O(ne/2k1241/8) f | $(u)| du

= O(n*/2-%/2t1/%) by the property of the Lebesgue integral,
= o(1), since k>a+p+ 3.

Combining (5.2), (5.7), (5.9), (5.11), (5.12), (5.13) and (5.14), we have the
desired result.

6. Proof of Theorem 3. The proof of Theorem 2 holds upto the stage
of (5.9). Actually, what we have to demonstrate now is that under conditions
(1.11) and (1.12),

J=4®y | " W) SP(w) du = o(1). 6.1)
0
Let m be a fixed number sufficiently large such that m/n < 4. Now we write
mfn n
r="+] 6.2)
=J; + Jp,eg
Consider first J, .

m/n
L= {8y [ @) SP(u) du
0

— ALY [B,1a0mim) SP i) — [ 173,0) SV ] (63

=Ji1+ J12, €8
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Now

| L1 | = O@™Hm/nf"™ | $y(mim)] | LE2E (mfm)]
= O(n—k)[O(n—v-l) O(m /n)oc O(m /n)—(a+k+1+p) j2-1/a
X n(a+k+1+p)/2—l/4], from (21),

= o(l). (6.4)

Coming to J;,, , we have
min
sl = A2 [T 2900 S0 d

min
= 0™ [ 7o) | LEFAD (1)) dt
° i (6.5)
= 0(n~%) O(ne+i+est) [ o(rp+att)
0
= O(n=+2+2) o(m[n)*+7+2

= o(1).

Again,

[l = 0™ [ u* | ) SV d
=067 [ w | hofu | LT ™) du

= 0(n™") Jn uP | (1) O(nletpretl /2-1/4y—(etp+ktD/2-1/4 gy
min

= O(n+s-0241/2) f " ueepri 378 | b ()] du
m/n

min

settingk = a+p+ 4+ e
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Integrating by parts and writing
H
W) = [ 1 ¢ d,
| 1o | = OGS m

+ O(n—s/2) '(n/ u—a—e/Z-—Zl/j(u) du

=Ty + Jos, €8 (6.6)
Wea | = O@=7) + O(n=<)m[n)=</*1 O(m/[n)*+*
= o(1) + O(m—<?) 6.7)
= o(1),

if m is chosen sufficiently large.

Also

[Vl = 0@ [ 00 s

pote / 2+2

= O(m—") f (—</2-1 gy

min (68)
— ( —5/2)[t——e/2 n

= o(1) + O(m—‘/z)
= o(1),

as before by choosing n sufficiently large. Combining (6.1)-(6.8), we have the
final result.
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